Assessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid

نویسندگان

  • Hesong Wang
  • Gensuo Jia
  • Anzhi Zhang
  • Chen Miao
چکیده

Combining flux tower measurements with remote sensing or land surface models is generally regarded as an efficient method to scale up flux data from site to region. However, due to the heterogeneous nature of the vegetated land surface, the changing flux source areas and the mismatching between ground source areas and remote sensing grids, direct use of in-situ flux measurements can lead to major scaling bias if their spatial representativeness is unknown. Here, we calculate and assess the spatial representativeness of 15 flux sites across northern China in two aspects: first, examine how well a tower represents fluxes from the specific targeted vegetation type, which is called vegetation-type level; and, second, examine how representative is the flux tower footprint of the broader landscape or regional extents, which is called spatial-scale level. We select fraction of target vegetation type (FTVT) and Normalized Difference Vegetation Index (NDVI) as key indicators to calculate the spatial representativeness of 15 EC sites. Then, these sites were ranked into four grades based on FTVT or cluster analysis from high to low in order: (1) homogeneous; (2) representative; (3) acceptable; and (4) disturbed measurements. The results indicate that: (1) Footprint climatology for each site was mainly distributed in an irregular shape, had similar spatial pattern as spatial distribution of prevailing wind direction; (2) At vegetation-type level, the number of homogeneous, representative, acceptable and disturbed measurements is 8, 4, 1 and 2, respectively. The average FTVT was 0.83, grass and crop sites had greater representativeness than forest sites; (3) At spatial-scale level, flux sites with zonal vegetation had greater representativeness than non-zonal vegetation sites, and the scales were further divided into three sub-scales: (a) in flux site scale, the average of absolute NDVI bias was 4.34%, the number of the above four grades is 9, 4, 1 and 1, respectively; (b) in remote sensing pixel scale, the average of absolute NDVI bias was 8.27%, the number is 7, 2, 2 and 4, respectively; (c) in land model grid scale, the average of absolute NDVI bias was 12.13%, the number is 5, 4, 3 and 3. These results demonstrate the variation of spatial representativeness of flux measurements among different application levels and scales and highlighted the importance of proper interpretation of EC flux measurements. These results also suggest that source area of EC flux should be involved in model validation and/or calibration with EC flux measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Advances in upscaling of eddy covariance measurements of carbon and water fluxes

[1] Eddy covariance flux towers provide continuous measurements of ecosystem-level net exchange of carbon, water, energy, and other trace gases between land surface and the atmosphere. The upscaling of flux observations from towers to broad regions provides a new and independent approach for quantifying these fluxes over regions, continents, or the globe. The seven contributions of this special...

متن کامل

Estimating daytime CO2 fluxes over a mixed forest from tall tower mixing ratio measurements

[1] Difficulties in estimating terrestrial ecosystem CO2 fluxes on regional scales have significantly limited our understanding of the global carbon cycle. This paper presents an effort to estimate daytime CO2 fluxes over a forested region on the scale of 50 km in northern Wisconsin, USA, using the tall-tower-based mixed layer (ML) budget method. Budget calculations were conducted for 2 years u...

متن کامل

The Spatial Variability of Energy and Carbon Dioxide Fluxes at the Floor of a Deciduous Forest

Fluxes of carbon dioxide, water and sensible heat were measured using three different eddy covariance systems above the forest floor of a closed deciduous forest (leaf area index ≈ 6). The primary objective was to examine the representativeness of a single eddy covariance system in estimating soil respiration for time scales ranging from one-half hour to more than one week. Experiments were con...

متن کامل

Uncertainty analysis of eddy covariance CO2 flux measurements for different EC tower distances using an extended two-tower approach

The use of eddy covariance (EC) CO2 flux measurements in data assimilation and other applications requires an estimate of the random uncertainty. In previous studies, the (classical) two-tower approach has yielded robust uncertainty estimates, but care must be taken to meet the often competing requirements of statistical independence (nonoverlapping footprints) and ecosystem homogeneity when ch...

متن کامل

Spatial representativeness of single tower measurements and the imbalance problem with eddy-covariance fluxes: results of a large-eddy simulation study

A large-eddy simulation (LES) study is presented that investigates the spatial variability of temporal eddy covariance fluxes and the systematic underestimation of representative fluxes linked to them. It extends a prior numerical study by performing high resolution simulations that allow for virtual measurements down to 20m in a convective boundary layer, so that conditions for small tower mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016